
A REAL TIME SYSTEM FOR DYNAMIC HAND GESTURE RECOGNITION WITH A DEPTH
SENSOR

A. Kurakin∗

Moscow Institute of Physics and Technology
Department of Applied Math and Control

Moscow, Russia

Z. Zhang, Z. Liu

Microsoft Research
Redmond, WA, USA

ABSTRACT

Recent advances in depth sensing provide exciting opportuni-
ties for the development of new methods for human activity
understanding. Yet, little work has been done in the area of
hand gesture recognition which has many practical applica-
tions. In this paper we propose a real-time system for dynamic
hand gesture recognition. It is fully automatic and robust to
variations in speed and style as well as in hand orientations.
Our approach is based on action graph, which shares sim-
ilar robust properties with standard HMM but requires less
training data by allowing states shared among different ges-
tures. To deal with hand orientations, we have developed a
new technique for hand segmentation and orientation normal-
ization. The proposed system is evaluated on a challenging
dataset of twelve dynamic American Sign Language (ASL)
gestures.

Index Terms— Gesture recognition, depth camera

1. INTRODUCTION

Hand gestures are commonly used for human-human commu-
nications. We do not even think about it when we use hand
gestures because they feel so natural to us. It is a natural ques-
tion whether the hand gesture could become one of the main
modalities for human-computer interactions. Driven by this
elusive goal, tremendous amount of research activities have
been devoted to hand gesture recognition. So far, most of
the research work has been focused on recognition from im-
ages and videos due to the popularity of digital cameras. The
recent progress in depth sensors such as Microsoft’s Kinect
device has generated a new level of excitement in gesture
recognition. With the depth information, a skeleton tracking
system has been developed by Microsoft. Many game devel-
opers have leveraged the skeleton tracking system to design
games with body gestures as the main interaction mode.

The skeleton tracking system addresses the problem of
body part segmentation which is very useful for body ges-
ture recognition, but it does not handle hand gestures which

∗The first author performed the work while at Microsoft Research.

typically involve palm and finger motions. Hand gestures are
more difficult to recognize than body gestures because the
motions are more subtle and there are serious occlusions be-
tween the fingers.

There exist several working hand gesture recognition sys-
tems [1, 2]. However [1] is rule-based and therefore a lot of
human efforts are required to add new gestures, [2] work with
static postures rather than dynamic gestures. In contrast to
the previous systems, our system is purely data-driven, fully
automatic, and is robust to variations in lighting conditions,
hand orientation, performing speed and style. To validate our
system, we have captured a dataset using a Microsoft Kinect
device. The dataset contains 12 dynamic American Sign Lan-
guage (ASL) gestures (fig. 4) performed by ten subjects. Each
subject performs each gesture three times. There are large
variations in style, speed and hand orientation for each ges-
ture. Our system achieves 87.7% recognition accuracy on this
challenging dataset. Furthermore, we have developed a real
time system. Any user can perform hand gestures in front of
the Kinect device, and our system performs gesture recogni-
tion automatically.

2. RELATED WORK

Hand gesture recognition has been an active research field for
a long time, and many different approaches can be found in
the literature. Like many other recognition tasks, a hand ges-
ture recognition system typically consists of two components:
front-end for feature extraction and back-end for classifica-
tion.

As the back-end classifier, given that the input of a hand
gesture is typically a sequence of image observations over
time, some researchers (e.g., [3]) have used Hidden Markov
Models (HMM) [4], while other researchers have used a time-
delayed neural network [5] or finite state machines [6].

We use a method called action graph as our back-end clas-
sifier. This method was proposed by Li et al. [7] for human
action recognition from videos. Compared to HMM, action
graph has the advantage that it requires less training data and
is can be easily expanded to recognize a new action type with-

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 1975

out retraining. Recently, action graph was also used for action
recognition from 3D depth sequences [8].

Many different types of visual features have been pro-
posed for hand gesture recognition. One type of features is
based on the skeleton structure of the fingers. One can use the
positions of the joints or the rotation angles at the joints as
the visual features. This type of features requires articulated
finger tracking. Various techniques have been proposed for
finger tracking [9, 10, 11, 12, 13]. Despite the great progress,
finger tracking is still a challenging problem due to the occlu-
sions between the fingers.

To avoid relying on finger tracking, an alternative ap-
proach is to use some form of geometric descriptors which
may not have clear anatomical meanings. This approach does
not rely on finger tracking, but it usually requires to segment
out the hand region.

Many hand segmentation techniques make the assumption
that the hand is the closest object to the camera. With this
assumption, thresholding [14, 1] or region growing [15] tech-
niques can be used to extract hand regions. Other researchers
have proposed to use skin color along with depth data for hand
segmentation [16].

After the hand region is segmented out, one can use the
hand silhouette as a shape descriptor [15, 1, 2]. Another
approach is to divide the hand region into cells and use the
cell occupancy information as features [14]. In [16], down-
sampled hand image with dimensionality reduction is used as
features.

Our hand segmentation approach is related to [1] that first
detects human body and then searches for the hand region in-
side it, as well as to [14] that uses Otsu thresholding technique
to segment hand.

3. SYSTEM OVERVIEW

Our gesture recognition pipeline consists of the following
steps:

1. Segmentation. For each input depth map, we first per-
form hand segmentation to obtain a set of hypothesized
hand regions. Sometimes this set might contain erro-
neously segmented regions.

2. Tracking and filtering. At the tracking stage, we find
correspondence between hypothesized hand regions at
current and previous frames, and find the true hand re-
gion among all the hypotheses for the current frame.

3. Orientation normalization. After obtaining the hand
region, we determine its position and orientation. We
then rotate the hand in such a way that the palm will be
approximately parallel to the image plane.

4. Feature extraction. We use normalized hand depth
map to extract visual features. We developed two types
of visual features: cell occupancy features and silhou-
ette features.

5. Classification. The visual feature vector obtained from
each frame is fed to an action graph for gesture classi-
fication.

3.1. Segmentation and tracking

For segmentation, we assume there is only a single person in
front of the depth camera, and this person occupies a signif-
icant portion of the camera’s field of view. Furthermore, we
assume that the hand is closer to the camera than the arm and
the body. These assumptions are reasonable for many practi-
cal scenarios.

We first divide the depth map into a number of blobs using
a connected-component labeling algorithm [17]. Two adja-
cent pixels are connected if the difference between their depth
values is less than a pre-specified threshold. The resulting
connected components are called blobs.

After we obtain the blobs, we find the largest blob and
identify the other blobs which are close to the largest blob.
We then use Otsu’s method to separate the arm region from
the body. Below is an outline of the algorithm.

1. Find human body. Find the biggest blob, and denote
it as MaxBodyBlob. Let B denote the set of blobs
which consists of MaxBodyBlob and the other blobs
whose distances from MaxBodyBlob are less than a
threshold. The union of the blobs in B is considered as
the human body.

2. Find hypothesized hand/arm regions.

(a) Calculate a depth threshold t based on Otsu’s
method for all the points in the blobs of B.

(b) Apply threshold t to points in B and select all
the points which are closer to the camera than
t. These points form several connected compo-
nents H1, . . . ,Hn each of which is a hypothe-
sized hand region.

(c) The true hand region is determined through blob
tracking. We establish correspondences between
blobs (H1, . . . ,Hn) in the current frame and
those in the previous frames. The blob with the
longest track is chosen as the true hand region.

3. Refine the hand region. The obtained hand region
might contain portions of the arm. We use the geo-
metric size and aspect ratio to determine whether the
region needs refinement. If so, we identify the wrist
area which is the thinnest part of the arm, and remove
the points beyond the wrist.

Fig. 1 shows an example of hand segmentation. The ini-
tial depth map is shown in (a). The segmented human body
obtained at Step 1 is shown in (b) in orange color. The hand
region obtained at Step 2 is shown in (c). The refined hand
region is shown in (d).

1976

(a) (b) (c) (d)

Fig. 1. Segmentation. (a) Initial depth image. (b) Segmented
human body. (c) Initial hand region. (d) Refined hand region.

(a) (b) (c)

Fig. 2. Orientation and scale normalization. (a) Before nor-
malization. (b) After in-depth normalization. (c) After in-
depth, in-plane, and scale normalization.

3.2. Normalization

This step performs scale and orientation normalization so that
the extracted feature descriptors are scale and rotation invari-
ant. For orientation normalization, we first estimate the hand
orientation parameters, and then rotate the hand point cloud
in such a way that the palm plane will be parallel to the image
plane and the hand will point upward.

The normalization algorithm consists of three steps as de-
scribed below:

1. In-depth normalization. Fit a plane P to the hand
point cloud, and compute a rotation that will rotate P to
be parallel to the image plane. This step is very useful
when the visible surface of the hand is approximately
planar. If not, such normalization could lead to an over-
stretched image with holes, and we do not perform in-
depth normalization in this case. See fig. 2a and 2b.

2. In-plane normalization. We project all the points onto
P and compute the principal direction. We then com-
pute an in-plane rotation matrix so that the principal di-
rection points upward after rotation. See fig. 2b and 2c.

3. Scale normalization. The hand region on P is scaled
to fit into a predefined rectangle.

After the normalization procedure, we obtain the rotation
parameters and a depth map of the normalized hand mesh (see
fig. 2c). This image is called HandImg, which, along with
the rotation parameters, will be used at the feature generation
stage.

0.85 22 mm … …

(a)

O

0.8 … … 0.93

(b)

Fig. 3. Feature extraction. (a) For cell occupancy feature, we
compute the occupied area of each cell as well as the average
depth for the non-empty cells. (b) For silhouette feature, we
divide the entire image into fan-like sectors. For each sector,
we compute the average distance from the part of the contour
inside this sector to the origin O.

3.3. Feature extraction

We extract a feature descriptor for each frame. Let i denote
the index of a frame. Its feature vector Fi has the following
form:

Fi = {~vi, ~ri, ~si} (1)

where ~vi is the velocity of the hand center, ~ri is the rotation
parameters of the hand (quaternion in our implementation),
and ~si is a shape descriptor.

Let ~xi denote the center of gravity of the hand at frame i.
The velocity ~vi is computed as ~vi = ~xi − ~xi−1.

We have developed two different shape descriptors:

1. Cell occupancy feature. We divide the hand image
HandImg into a uniform grid (4×4, 8×8 or 16×16).
For each cell of the grid we calculate its occupancy
(area of the cell occupied by hand mesh) and the av-
erage depth after normalization. We scale values of
the average depth into [0,1] range. Then we combine
the occupancy and the average depth of each cell into a
vector ~si. See fig. 3a.

2. Silhouette feature. Use the center of HandImg as an
origin, and divide the whole image into a number of
fan-like sectors. For each sector, compute the average
distance from the hand contour in the sector to the ori-
gin. Concatenate these distances for all the sectors into
a vector ~si. See fig. 3b.

Due to the large dimensionality of both shape descrip-
tors, we perform dimensionality reduction using the Principal
Component Analysis (PCA). We choose the first 10-30 PCA
coefficients as the new shape descriptor.

1977

3.4. Action graph

For the back-end classifier, we use an approach called action
graph, which was proposed by Li et al. [7] for video-based
action recognition. Compared to HMM, action graph has the
advantage that it requires less training data and allows differ-
ent actions to share the states.

An action graph is represented as a quadruplet

Γ = (Ω,Λ, G,Ψ) (2)

where Ω = {ω1, . . . , ωM} is the set of key postures, Λ =
{p(x|ω1), . . . , p(x|ωM)} is the observation likelihood model,
G = (Ω, A,A1, . . . , AL) is the set of transition matrices (a
global transition matrix, and a transition matrix for each ges-
ture type), and Ψ is a set of gesture labels.

The training procedure for the action graph consists of key
posture learning and transition matrix learning.

To learn the key postures we first cluster all the feature
vectors of all the gesture types in the training data using a
K-means clustering procedure. For each cluster, we fit a
Gaussian distribution and estimate the observation likelihood
model p(x|ωm).

We compute elements p(j|i) of transition matrices as
Ni→j/Ni, where Ni→j is the number of transitions from
state i to j, and Ni is the number of times state i was ob-
served. Due to the small amount of training data, the tran-
sition matrices are usually very sparse which leads to poor
recognition rate. To overcome this difficulty we add a small
regularization value ξ to the transition matrix, and normalize
them so that

∑
j p(j|i) = 1. Experiments show that ξ should

be chosen in the range [0.0001, 0.01], so we use ξ = 0.001.
As in [7] we implemented 5 decoding schemes: Action-

Specific Viterbi Decoding (ASVD), Uni-Gram and Bi-Gram
Global Viterbi Decoding (UGVD and BGVD), Uni-Gram
and Bi-Gram Maximum Likelihood Decoding (UMLD and
BMLD). Due to lack of space we refer reader to the original
paper for their detailed description.

4. EXPERIMENTS

Since there are no publicly released dataset for 3D dynamic
gesture recognition, we collected a dataset of twelve Amer-
ican Sign Language (ASL) gestures including Bathroom,
Blue, Finish, Green, Hungry, Milk, Past, Pig, Store, Where,
Letter J, Letter Z (see fig. 4 and 5).

Each gesture is performed 3 times by each of the 10 par-
ticipants. We use recordings of 9 persons for training and the
remaining person for testing. Such experiment is repeated for
five random subdivisions of the data. The overall accuracy
is calculated as the average ratio of the correctly recognized
gestures over the total number of test sequences.

In addition to the off-line experiment, we have also imple-
mented an online real time system. The unoptimized version
of the system runs at 10 FPS on a regular desktop machine.

Table 1 summarizes best two results for each decoding
scheme. We observe that the system works the best when the
dimensionality is set to 15, and the number of key postures
ranges between 70 and 90.

Silhouette feature usually works better than cell occu-
pancy features. This is probably because the most discrim-
inative information about the hand shape is encoded in the
outline of the hand.

In out experiments Uni-gram Decoding usually shows
better accuracy than Bi-Gram Decoding, and Maximum Like-
lihood Decoding is better than Global Viterbi Decoding. Also
the accuracy of ASVD is comparable to Bi-Gram schemes
but always worse than Uni-Gram schemes. These results
differ from [7], where Uni-Gram schemes were worse. This
is probably because in our dataset some gestures could be
distinguished by key shapes without having to rely on the
exact sequence of key-postures, and decision of Uni-Gram
decoding schemes based mostly on the used key postures, not
their sequence.

Scale and orientation normalization increases the accu-
racy by 5 − 27% for silhouette feature, and up to 10% for
cell occupancy features.

Decoding
scheme Features # Clusters # Dims Accuracy

ASVD Silh. 90 15 0.777
Silh. 70 15 0.766

BGVD Silh. 70 15 0.8
Silh. 90 20 0.791

BMLD Cell 70 25 0.805
Silh. 90 15 0.797

UGVD Silh. 50 20 0.877
Silh. 70 15 0.83

UMLD Silh. 50 20 0.858
Silh. 90 25 0.852

Table 1. The top two results for each decoding scheme.

5. CONCLUSION

We presented a real time dynamic hand gesture recognition
system using a commodity depth camera. Our system is
purely data-driven thus can be used to recognize any other
gestures. Furthermore, it is fully automatic and robust to
variations in hand orientation, performing style and speed.
To evaluate the performance of our technique, we collected
a small but challenging dataset of 12 dynamic ASL gestures,
and studied influence of different parameters on the overall
recognition accuracy (the dataset will be released to the pub-
lic). This is the first data-driven system that is capable of
automatic hand gesture recognition.

1978

Fig. 4. Gestures from our database. Left to right, top to bot-
tom: bathroom, blue, finish, green, hungry, milk, past, pig,
store, where, letter J, letter Z.

Fig. 5. Depth sequence for gesture J from our dataset.

6. REFERENCES

[1] Xia Liu and Kikuo Fujimura, “Hand Gesture Recogni-
tion using Depth Data,” in 6th IEEE International Conf.
on Automatic Face and Gesture Recognition, 2004.

[2] Zhou Ren, Junsong Yuan, and Zhengyou Zhang, “Ro-
bust hand gesture recognition based on finger-earth
movers distance with a commodity depth camera,” in
ACM Intl. Conf. on Multimedia, 2011.

[3] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human
action in time-sequential images using Hidden Markov
Model,” in IEEE CVPR, 1992.

[4] Lawrence R. Rabiner, “A tutorial on hidden markov
models and selected applications in speech recognition,”
in Readings in speech recognition. Morgan Kaufmann
Publishers Inc., 1990.

[5] Ming-Hsuan Yang and Narendra Ahuja, “Recognizing
hand gesture using motion trajectories,” in IEEE CVPR,
1999.

[6] Pengyu Hong, Thomas S. Huang, and Matthew Turk,
“Gesture modeling and recognition using finite state ma-

chines,” in 4th IEEE Intl. Conf. on Automatic Face and
Gesture Recognition, 2000.

[7] Wanqing Li, Zhengyou Zhang, and Zicheng Liu, “Ex-
pandable data-driven graphical modeling of human ac-
tions based on salient postures,” IEEE Trans. Circuits
Syst. Video Techn., vol. 18, no. 11, pp. 1499–1510, 2008.

[8] Wanqing Li, Zhengyou Zhang, and Zicheng Liu, “Ac-
tion recognition based on a bag of 3d points,” in IEEE
Intl. Workshop on CVPR for Human Communicative Be-
havior Analysis, 2010.

[9] Erik Sudderth, Graphical Models for Visual Object
Recognition and Tracking, Ph.D. thesis, Massachusetts
Institute of Technology, 2006.

[10] Tangli Liu, Wei Liang, Xinxiao Wu, and Lei Chen,
“Tracking articulated hand underlying graphical model
with depth cue,” Congress on Image and Signal Pro-
cessing, vol. 4, pp. 249–253, 2008.

[11] Ouissem Ben Henia, Mohamed Hariti, and Saida
Bouakaz, “A two-step minimization algorithm for
model-based hand tracking,” in 18th International Con-
ference on Computer Graphics, Visualization and Com-
puter Vision (WSCG), Feb. 2010.

[12] Ouissem Ben Henia and Saida Bouakaz, “A new depth-
based function for 3d hand motion tracking,” in Interna-
tional Conference on Computer Vision Theory and Ap-
plications(VISAPP), 2011.

[13] Sigurjón Árni Gudmundsson, Johannes R. Sveinsson,
Montse Pardàs, Henrik Aanæs, and Rasmus Larsen,
“Model-based hand gesture tracking in tof image se-
quences,” in 6th International Conference on Articu-
lated motion and deformable objects (AMDO), 2010.

[14] Poonam Suryanarayan, Anbumani Subramanian, and
Dinesh Mandalapu, “Dynamic hand pose recognition
using depth data,” in 20th International Conf. on Pat-
tern Recognition (ICPR), 2010.

[15] Eva Kollorz, Jochen Penne, Joachim Hornegger, and
Alexander Barke, “Gesture recognition with a time-of-
flight camera,” International Journal of Intelligent Sys-
tems Technologies and Applications, vol. 5, November
2008.

[16] Michael Van den Bergh and Luc Van Gool, “Combining
rgb and tof cameras for real-time 3d hand gesture inter-
action,” in IEEE Workshop on Applications of Computer
Vision (WACV), 2011.

[17] L. Shapiro and G. Stockman, Computer Vision, Prentice
Hall, 2002.

1979

